% This function is part of the NMSM Pipeline, see file for full license.
%
%
% data:
% extrapolationCommands - synergy excitations extracted from measured muscle excitations
% params.numberOfSynergies - number of synergies - double
% size(emgData,2) - number of trials in total - double
% params.numberOfMeasuredEmgChannels - number of measured EMG channels in total - double
% length(params.taskNames) - number of tasks - double
% size(emgData,1) - number of time frames for each trial - double
% params.matrixFactorizationMethod - matrix factorization algorithm - 'PCA' or 'NMF'
% SynXCategory - variability of synergy vector weights across trials for
% SynX reconstruction
% params.residualCategorization - variability of synergy vector weights across trials for
% residual excitation reconstruction
% TrialIndex - trial index for each task - cell array (nTask cells)
% emgData - Processed EMG signals (normalized to the maximum values over
% all trials)
%
% returns measured synergy excitations for constructing SynX and residual
% muscle excitations.
function [extrapolationCommands, residualCommands] = ...
getSynergyCommands(emgData, numberOfSynergies, ...
matrixFactorizationMethod, synergyCategorizationOfTrials, ...
residualCategorizationOfTrials)
%--Normalize EMGs
maxEmgOverAllTrials = max(max(emgData, [], 3), [], 1);
normalizedEMG = permute(emgData ./ maxEmgOverAllTrials, [3 2 1]);
%--Extract synergy excitations from measured muscle excitations
if strcmpi(matrixFactorizationMethod, 'PCA')
extrapolationCommands = getPcaCommands(normalizedEMG, numberOfSynergies, ...
synergyCategorizationOfTrials);
residualCommands = getPcaCommands(normalizedEMG, numberOfSynergies, ...
residualCategorizationOfTrials);
elseif strcmpi(matrixFactorizationMethod, 'NMF')
options = statset('Display', 'off', 'TolX', 1e-10, 'TolFun', 1e-10);
if ~exist('nmfResultsSynX.mat')
extrapolationCommands = getNmfCommands(normalizedEMG, numberOfSynergies, ...
synergyCategorizationOfTrials, options);
residualCommands = getNmfCommands(normalizedEMG, numberOfSynergies, ...
residualCategorizationOfTrials, options);
save('nmfResultsSynX.mat','extrapolationCommands', 'residualCommands');
else
load('nmfResultsSynX.mat');
end
end
end
function nmfCommands = getNmfCommands(normalizedEMG, ...
numberOfSynergies, categorizationOfTrials, options)
for i = 1 : length(categorizationOfTrials)
[nmfCommands{i}, nmfWeight] = nnmf(reshape(normalizedEMG(:, :, ...
categorizationOfTrials{i}), size(normalizedEMG, 1) * ...
size(categorizationOfTrials{i}, 2), size(normalizedEMG, 2)), ...
numberOfSynergies, 'replicates', 20, 'algorithm', 'mult', ...
'options', options);
nmfCommands{i} = reshape(nmfCommands{i}, size(normalizedEMG, 1), ...
size(categorizationOfTrials{i}, 2), numberOfSynergies);
for k = 1 : size(categorizationOfTrials{i}, 2)
for j = 1 : numberOfSynergies
nmfCommands{i}(:, k, j) = spline(linspace(1, size(normalizedEMG, ...
1), 21), nmfCommands{i}(1 : (size(normalizedEMG, 1) - 1)/(21 - ...
1) : end, k, j), 1 : size(normalizedEMG, 1));
end
end
nmfCommands{i} = reshape(nmfCommands{i}, size(normalizedEMG, ...
1) * size(categorizationOfTrials{i}, 2), numberOfSynergies);
NormFactor = sum(nmfWeight, 2);
nmfCommands{i} = nmfCommands{i} .* NormFactor';
end
end
function pcaCommands = getPcaCommands(normalizedEMG, numberOfSynergies, ...
categorizationOfTrials)
for i = 1 : length(categorizationOfTrials)
[~, principleComponents] = pca(reshape(permute(normalizedEMG(:, :, ...
categorizationOfTrials{i}), [1 3 2]), size(normalizedEMG, 1) * ...
size(categorizationOfTrials{i}, 2), size(normalizedEMG, 2)));
pcaCommands{i} = principleComponents(:, (1 : numberOfSynergies));
end
end